NAME

CalculatePhysicochemicalProperties.pl - Calculate physicochemical properties for SD files

SYNOPSIS

CalculatePhysicochemicalProperties.pl SDFile(s)...

PhysicochemicalProperties.pl [--AromaticityModel AromaticityModelType] [--CompoundID DataFieldName or LabelPrefixString] [--CompoundIDLabel text] [--CompoundIDMode] [--DataFields "FieldLabel1, FieldLabel2,..."] [--DataFieldsMode All | Common | Specify | CompoundID] [-d, --DataFields "FieldLabel1, FieldLabel2,..."] [--Filter Yes | No] [-h, --help] [--HydrogenBonds HBondsType1 | HBondsType2] [-k, --KeepLargestComponent Yes | No] [-m, --mode All | RuleOf5 | RuleOf3 | "name1, [name2,...]" ] [--MolecularComplexity Name,Value, [Name,Value,...]] [--OutDelim comma | tab | semicolon] [--output SD | text | both] [-o, --overwrite] [--Precision Name,Number,[Name,Number,...]] [--RotatableBonds Name,Value, [Name,Value,...]] [--RuleOf3Violations Yes | No] [--RuleOf5Violations Yes | No] [-q, --quote Yes | No] [-r, --root RootName] [-w, --WorkingDir dirname] SDFile(s)...

DESCRIPTION

Calculate physicochemical properties for SDFile(s) and create appropriate SD or CSV/TSV text file(s) containing calculated properties.

The current release of MayaChemTools supports the calculation of these physicochemical properties:

MolecularWeight, ExactMass, HeavyAtoms, Rims, AromaticRings, van der Waals MolecularVolume [Ref 93], RotatableBonds, HydrogenBondDonors, HydrogenBondAcceptors, LogP and Molar Refractivity (SLogP and SMR) [Ref 89], Topological Polar Surface Area (TPSA) [Ref 90], Fraction of SP3 carbons (Fsp3Carbons) and SP3 carbons (Sp3Carbons) [Ref 115-116, Ref 119], MolecularComplexity [Ref 117-119]

Multiple SDFile names are separated by spaces. The valid file extensions are .sdf and .sd. All other file names are ignored. All the SD files in a current directory can be specified either by *.sdf or the current directory name.

The calculation of molecular complexity using MolecularComplexityType parameter corresponds to the number of bits-set or unique keys [Ref 117-119] in molecular fingerprints. Default value for MolecularComplexityType: MACCSKeys of size 166. The calculation of MACCSKeys is relatively expensive and can take rather substantial amount of time.

OPTIONS


The supported aromaticity model names along with model specific control parameters are defined in AromaticityModelsData.csv, which is distributed with the current release and is available under lib/data directory. Molecule.pm module retrieves data from this file during class instantiation and makes it available to method DetectAromaticity for detecting aromaticity corresponding to a specific model.

--CompoundID DataFieldName or LabelPrefixString

This value is --CompoundIDMode specific and indicates how compound ID is generated.

For DataField value of --CompoundIDMode option, it corresponds to datafield label name whose value is used as compound ID; otherwise, it's a prefix string used for generating compound IDs like LabelPrefixString<Number>. Default value, Cmpd, generates compound IDs which look like Cmpd<Number>.

Examples for DataField value of --CompoundIDMode:

MolID
ExtReg
Examples for \textit{LabelPrefix} or \textit{MolNameOrLabelPrefix} value of \texttt{--CompoundIDMode}:

\begin{verbatim}
Compound
\end{verbatim}

The value specified above generates compound IDs which correspond to Compound\textless Number\textgreater instead of default value of Cmpd\textless Number\textgreater.

\texttt{--CompoundIDLabel text}

Specify compound ID column label for CSV/TSV text file(s) used during \texttt{CompoundID} value of \texttt{--DataFieldsMode} option. Default value: \texttt{CompoundID}.

\texttt{--CompoundIDMode DataField | MolName | LabelPrefix | MolNameOrLabelPrefix}

Specify how to generate compound IDs and write to CSV/TSV text file(s) along with calculated physicochemical properties for \texttt{DataField} \texttt{MolName} \texttt{LabelPrefix} \texttt{MolNameOrLabelPrefix} option. Possible values: \texttt{DataField} \texttt{MolName} \texttt{LabelPrefix} \texttt{MolNameOrLabelPrefix}. Default value: \texttt{MolNameOrLabelPrefix}.

For \texttt{MolNameAndLabelPrefix} value of \texttt{--CompoundIDMode}, molname line in SDFile(s) takes precedence over sequential compound IDs generated using \texttt{LabelPrefix} and only empty molname values are replaced with sequential compound IDs.

This is only used for \texttt{CompoundID} value of \texttt{--DataFieldsMode} option.

\texttt{--DataFields FieldLabel1,FieldLabel2,...}

Comma delimited list of SDFile(s) data fields to extract and write to CSV/TSV text file(s) along with calculated physicochemical properties for \texttt{FieldLabel1} \texttt{FieldLabel2}... option. Possible values: \texttt{FieldLabel1} \texttt{FieldLabel2}... This is only used for \texttt{Specify} value of \texttt{--DataFieldsMode} option.

Examples:

\begin{verbatim}
Extreg
MolID,CompoundName
\end{verbatim}

\texttt{-d, --DataFieldsMode All | Common | Specify | CompoundID}

Specify how data fields in SDFile(s) are transferred to output CSV/TSV text file(s) along with calculated physicochemical properties for \texttt{All} \texttt{Common} \texttt{Specify} \texttt{CompoundID} option. Transfer all SD data field; transfer SD data files common to all compounds; extract specified data fields; generate a compound ID using molname line, a compound prefix, or a combination of both. Possible values: \texttt{All} \texttt{Common} \texttt{Specify} \texttt{CompoundID}.

Default value: \texttt{CompoundID}.

\texttt{-f, --Filter Yes | No}

Specify whether to check and filter compound data in SDFile(s). Possible values: \texttt{Yes} \texttt{No}. Default value: \texttt{Yes}.

By default, compound data is checked before calculating physicochemical properties and compounds containing atom data corresponding to non-element symbols or no atom data are ignored.

\texttt{-h, --help}

Print this help message.

\texttt{--HydrogenBonds HBondsType1 | HBondsType2}

Parameters to control calculation of hydrogen bond donors and acceptors. Possible values: \texttt{HBondsType1}, \texttt{HydrogenBondsType1}, \texttt{HBondsType2}, \texttt{HydrogenBondsType2}. Default value: \texttt{HBondsType2} which corresponds to \texttt{RuleOf5} definition for number of hydrogen bond donors and acceptors.

The current release of MayaChemTools supports identification of two types of hydrogen bond donor and acceptor atoms with these names:

\begin{verbatim}
HBondsType1 or HydrogenBondsType1
HBondsType2 or HydrogenBondsType2
\end{verbatim}

The names of these hydrogen bond types are rather arbitrary. However, their definitions have specific meaning and are as follows:

\begin{verbatim}
HydrogenBondsType1 [ Ref 60-61, Ref 65-66 ]:
\end{verbatim}
Calculate physicochemical properties for only the largest component in molecule. Possible values: 
- Default value: 

For molecules containing multiple connected components, physicochemical properties can be calculated in two different ways: use all connected components or just the largest connected component. By default, all atoms except for the largest connected component are deleted before calculation of physicochemical properties.

Specify physicochemical properties to calculate for SDFile(s): calculate all available physical chemical properties; calculate properties corresponding to Rule of 5; or use a comma delimited list of supported physicochemical properties. Possible values: 
- Default value: 

Ref 91 includes these properties: 
- MolecularWeight <= 500, HydrogenBondDonors <= 5, HydrogenBondAcceptors <= 10, and logP <= 5.

Ref 92 includes these properties: 
- MolecularWeight <= 300, RotatableBonds <= 3, HydrogenBondDonors <= 3, HydrogenBondAcceptors <= 3, logP <= 3, and TPSA <= 60.

calculates all supported physicochemical properties.

Parameters to control calculation of molecular complexity: it’s a comma delimited list of parameter name and value pairs.

Possible parameter names: 
- MolecularComplexityType, AtomIdentifierType, AtomicInvariantsToUse, FunctionalClassesToUse, MACCSKeysSize, NeighborhoodRadius, MinPathLength, MaxPathLength, UseBondSymbols, MinDistance, MaxDistance, UseTriangleInequality, DistanceBinSize, NormalizationMethodology.

The valid parameter values for each parameter name are described in the following sections.

The current release of MayaChemTools supports calculation of molecular complexity using MolecularComplexityType parameter corresponding to the number of bits-set or unique keys [ Ref 117-119 ] in molecular fingerprints. The valid values for MolecularComplexityType are:

- AtomTypesFingerprints
- ExtendedConnectivityFingerprints
- MACCSKeys
- PathLengthFingerprints
- TopologicalAtomPairsFingerprints
- TopologicalAtomTorsionsFingerprints
- TopologicalPharmacophoreAtomPairsFingerprints
- TopologicalPharmacophoreAtomTripletsFingerprints

Default value for MolecularComplexityType: MACCSKeys.

AtomIdentifierType parameter name corresponds to atom types used during generation of fingerprints. The valid values for AtomIdentifierType are: 
- AtomicInvariantsAtomTypes, DREIDINGAtomTypes, EStateAtomTypes, FunctionalClassAtomTypes, MMFF94AtomTypes, SLogPAtomTypes, SYBYLAtomTypes, TPSAAAtomTypes, UFFAtomTypes, AtomicInvariantsAtomTypes is not supported for during the following values of MolecularComplexityType: MACCSKeys, TopologicalPharmacophoreAtomPairsFingerprints.
TopologicalPharmacophoreAtomTripletsFingerprints. FunctionalClassAtomTypes is the only valid value for AtomIdentifierType for topological pharmacophore fingerprints.

Default value for AtomIdentifierType: AtomicInvariantsAtomTypes for all except topological pharmacophore fingerprints where it is FunctionalClassAtomTypes.

AtomicInvariantsToUse parameter name and values are used during AtomicInvariantsAtomTypes value of parameter AtomIdentifierType. It’s a list of space separated valid atomic invariant atom types.

Possible values for atomic invariants are: AS, X, BO, LBO, SB, DB, TB, H, Ar, RA, FC, MN, SM. Default value for AtomicInvariantsToUse parameter are set differently for different fingerprints using MolecularComplexityType parameter as shown below:

<table>
<thead>
<tr>
<th>MolecularComplexityType</th>
<th>AtomicInvariantsToUse</th>
</tr>
</thead>
<tbody>
<tr>
<td>AtomicInvariantsAtomTypes</td>
<td></td>
</tr>
<tr>
<td>AS X BO H FC</td>
<td></td>
</tr>
</tbody>
</table>

The atomic invariants abbreviations correspond to:

- AS = Atom symbol corresponding to element symbol
- X<n> = Number of non-hydrogen atom neighbors or heavy atoms
- BO<n> = Sum of bond orders to non-hydrogen atom neighbors or heavy atoms
- LBO<n> = Largest bond order of non-hydrogen atom neighbors or heavy atoms
- SB<n> = Number of single bonds to non-hydrogen atom neighbors or heavy atoms
- DB<n> = Number of double bonds to non-hydrogen atom neighbors or heavy atoms
- TB<n> = Number of triple bonds to non-hydrogen atom neighbors or heavy atoms
- H<n> = Number of implicit and explicit hydrogens for atom
- Ar = Aromatic annotation indicating whether atom is aromatic
- RA = Ring atom annotation indicating whether atom is a ring
- FC<n/+n/> = Formal charge assigned to atom
- MN<n> = Mass number indicating isotope other than most abundant isotope
- SM<n> = Spin multiplicity of atom. Possible values: 1 (singlet), 2 (doublet) or 3 (triplet)

Atom type generated by AtomTypes::AtomicInvariantsAtomTypes class corresponds to:

AS.X<n>.BO<n>.LBO<n>.SB<n>.DB<n>.TB<n>.H<n>.Ar.RA.FC<n/+n/>.MN<n>.SM<n>

Except for AS which is a required atomic invariant in atom types, all other atomic invariants are optional. Atom type specification doesn’t include atomic invariants with zero or undefined values.

In addition to usage of abbreviations for specifying atomic invariants, the following descriptive words are also allowed:

- X : NumOfNonHydrogenAtomNeighbors or NumOfHeavyAtomNeighbors
- BO : SumOfBondOrdersToNonHydrogenAtoms or SumOfBondOrdersToHeavyAtoms
- LBO : LargestBondOrderToNonHydrogenAtoms or LargestBondOrderToHeavyAtoms
- SB : NumOfSingleBondsToNonHydrogenAtoms or NumOfSingleBondsToHeavyAtoms
- DB : NumOfDoubleBondsToNonHydrogenAtoms or NumOfDoubleBondsToHeavyAtoms
- TB : NumOfTripleBondsToNonHydrogenAtoms or NumOfTripleBondsToHeavyAtoms
- H : NumOfImplicitAndExplicitHydrogens
- Ar : Aromatic
- RA : RingAtom
- FC : FormalCharge
- MN : MassNumber
- SM : SpinMultiplicity

AtomTypes::AtomicInvariantsAtomTypes module is used to assign atomic invariant atom types.

FunctionalClassesToUse parameter name and values are used during FunctionalClassAtomTypes value of parameter AtomIdentifierType. It’s a list of space separated valid atomic invariant atom types.

Possible values for atom functional classes are: Ar, CA, H, HBA, HBD, Hal, NI, PI, RA.
Default value for `FunctionalClassesToUse` parameter is set to:

```
HBD  HBA  PI  NI  Ar  Hal
```

for all fingerprints except for the following two `MolecularComplexityType` fingerprints:

```
MolecularComplexityType  FunctionalClassesToUse
TopologicalPharmacophoreAtomPairsFingerprints  HBD  HBA  P  NI  H
TopologicalPharmacophoreAtomTripletsFingerprints  HBD  HBA  PI  NI  H  Ar
```

The functional class abbreviations correspond to:

```
HBD: HydrogenBondDonor
HBA: HydrogenBondAcceptor
PI: PositivelyIonizable
NI: NegativelyIonizable
Ar: Aromatic
Hal: Halogen
H: Hydrophobic
RA: RingAtom
CA: ChainAtom
```

Functional class atom type specification for an atom corresponds to:

```
Ar.CA.H.HBA.H.BD.Hal.NI.PI.RA
```

`AtomTypes::FunctionalClassAtomTypes` module is used to assign functional class atom types. It uses following definitions [Ref 60-61, Ref 65-66]:

- HydrogenBondDonor: NH, NH2, OH
- HydrogenBondAcceptor: N[!H], O
- PositivelyIonizable: +, NH2
- NegativelyIonizable: -, C(=O)OH, S(=O)OH, P(=O)OH

`MACCSKeysSize` parameter name is only used during `MACCSKeys` value of `MolecularComplexityType` and corresponds to the size of MACCS key set. Possible values: 166 or 322. Default value: 166.

`NeighborhoodRadius` parameter name is only used during `ExtendedConnectivityFingerprints` value of `MolecularComplexityType` and corresponds to atomic neighborhoods radius for generating extended connectivity fingerprints. Possible values: positive integer. Default value: 2.

`MinPathLength` and `MaxPathLength` parameters are only used during `PathLengthFingerprints` value of `MolecularComplexityType` and correspond to minimum and maximum path lengths to use for generating path length fingerprints. Possible values: positive integers. Default value: `MinPathLength` - 1; `MaxPathLength` - 8.

`UseBondSymbols` parameter is only used during `PathLengthFingerprints` value of `MolecularComplexityType` and indicates whether bond symbols are included in atom path strings used to generate path length fingerprints. Possible value: Yes or No. Default value: Yes.

`MinDistance` and `MaxDistance` parameters are only used during `TopologicalAtomPairsFingerprints` and `TopologicalAtomTripletsFingerprints` values of `MolecularComplexityType` and correspond to minimum and maximum bond distance between atom pairs during topological pharmacophore fingerprints. Possible values: positive integers. Default value: `MinDistance` - 1; `MaxDistance` - 10.

`UseTriangleInequality` parameter is used during these values for `MolecularComplexityType`:
- `TopologicalAtomTripletsFingerprints` and `TopologicalPharmacophoreAtomTripletsFingerprints`. Possible values: Yes or No. It determines wheter to apply triangle inequality to distance triplets. Default value: `TopologicalAtomTripletsFingerprints` - No; `TopologicalPharmacophoreAtomTripletsFingerprints` - Yes.

`DistanceBinSize` parameter is used during `TopologicalPharmacophoreAtomTripletsFingerprints` value of `MolecularComplexityType` and corresponds to distance bin size used for binning distances during generation of topological pharmacophore atom triplets fingerprints. Possible value: positive integer. Default value: 2.

`NormalizationMethodology` is only used for these values for `MolecularComplexityType`:
- `ExtendedConnectivityFingerprints`, `TopologicalPharmacophoreAtomPairsFingerprints` and `TopologicalPharmacophoreAtomTripletsFingerprints`. It corresponds to normalization methodology to use for scaling the number of bits-set or unique keys during generation of fingerprints. Possible values during `ExtendedConnectivityFingerprints`: None or ByHeavyAtomsCount; Default value: None; Possible values during topological pharmacophore atom pairs and triplets fingerprints: None or ByPossibleKeysCount; Default value:
None. ByPossibleKeysCount corresponds to total number of possible topological pharmacophore atom pairs or triplets in a molecule.

Examples of MolecularComplexity name and value parameters:

- MolecularComplexityType,AtomTypesFingerprints,AtomIdentifierType,AtomInvariantsToUse,AS X BO H FC
- MolecularComplexityType,ExtendedConnectivityFingerprints,AtomIdentifierType,AtomInvariantsAtomTypes,AtomInvariantsToUse,AS X BO H FC NN,NeighborhoodRadius,2,NormalizationMethodology,None
- MolecularComplexityType,MACCSKeys,MACCSKeysSize,166
- MolecularComplexityType,PathLengthFingerprints,AtomIdentifierType,AtomInvariantsAtomTypes,AtomInvariantsToUse,AS,MinPathLength,1,MaxPathLength,8,UseBondSymbols,Yes
- MolecularComplexityType,TopologicalAtomPairsFingerprints,AtomIdentifierType,AtomInvariantsAtomTypes,AtomInvariantsToUse,AS X BO H FC,MinDistance,1,MaxDistance,10
- MolecularComplexityType,TopologicalAtomTripletsFingerprints,AtomIdentifierType,AtomInvariantsAtomTypes,AtomInvariantsToUse,AS X BO H FC,MinDistance,1,MaxDistance,10,UseTriangleInequality,No
- MolecularComplexityType,TopologicalAtomTorsionsFingerprints,AtomIdentifierType,AtomInvariantsAtomTypes,AtomInvariantsToUse,AS X BO H FC
- MolecularComplexityType,TopologicalPharmacophoreAtomPairsFingerprints,AtomIdentifierType,FunctionalClassAtomTypes,FunctionalClassesToUse,HBD HBA PI NI H,MinDistance,1,MaxDistance,10,NormalizationMethodology,None
- MolecularComplexityType,TopologicalPharmacophoreAtomTripletsFingerprints,AtomIdentifierType,FunctionalClassAtomTypes,FunctionalClassesToUse,HBD HBA PI NI H Ar,MinDistance,1,MaxDistance,10,NormalizationMethodology,None,DistanceBinSize,2

--OutDelim comma | tab | semicolon

Delimiter for output CSV/TSV text file(s). Possible values: comma, tab, or semicolon Default value: comma.

--output SD | text | both

Type of output files to generate. Possible values: SD, text, or both. Default value: text.

-o, --overwrite

Overwrite existing files.

--Precision Name,Number,[Name,Number,...]

Precision of calculated property values in the output file: it’s a comma delimited list of property name and precision value pairs. Possible property names: MolecularWeight, ExactMass. Possible values: positive integers. Default value: MolecularWeight,2, ExactMass,4.

Examples:

- ExactMass,3
- MolecularWeight,1,ExactMass,2

-q, --quote Yes | No

Put quote around column values in output CSV/TSV text file(s). Possible values: Yes or No. Default value: Yes.
New file name is generated using the root: <Root>.<Ext>. Default for new file names:
<SDFileName><PhysicochemicalProperties>.<Ext>. The file type determines <Ext> value. The sdf, csv,
and tsv <Ext> values are used for SD, comma/semicolon, and tab delimited text files, respectively. This
option is ignored for multiple input files.

--RotatableBonds Name,Value, [Name,Value,...]
Parameters to control calculation of rotatable bonds [Ref 92]: it's a comma delimited list of parameter
name and value pairs. Possible parameter names: IgnoreTerminalBonds, IgnoreBondsToTripleBonds,
IgnoreAmideBonds, IgnoreThioamideBonds, IgnoreSulfonamideBonds. Possible parameter values: Yes or No. By
default, value of all parameters is set to Yes.

--RuleOf3Violations Yes / No
Specify whether to calculate RuleOf3Violations for SDFile(s). Possible values: Yes or No. Default value: No
. For Yes value of RuleOf3Violations, in addition to calculating total number of RuleOf3 violations,
individual violations for compounds are also written to output files.
RuleOf3 [Ref 92] states: MolecularWeight <= 300, RotatableBonds <= 3, HydrogenBondDonors <= 3,
HydrogenBondAcceptors <= 3, logP <= 3, and TPSA <= 60.

--RuleOf5Violations Yes / No
Specify whether to calculate RuleOf5Violations for SDFile(s). Possible values: Yes or No. Default value: No
. For Yes value of RuleOf5Violations, in addition to calculating total number of RuleOf5 violations,
individual violations for compounds are also written to output files.
RuleOf5 [Ref 91] states: MolecularWeight <= 500, HydrogenBondDonors <= 5, HydrogenBondAcceptors
<= 10, and logP <= 5.

--TPSA Name,Value, [Name,Value,...]
Parameters to control calculation of TPSA: it's a comma delimited list of parameter name and value pairs.
Possible parameter names: IgnorePhosphorus, IgnoreSulfur. Possible parameter values: Yes or No. By default,
value of all parameters is set to Yes.
By default, TPSA atom contributions from Phosphorus and Sulfur atoms are not included during TPSA
calculations. [Ref 91]

-w, --WorkingDir DirName
Location of working directory. Default value: current directory.

EXAMPLES
To calculate default set of physicochemical properties - MolecularWeight, HeavyAtoms, MolecularVolume,
RotatableBonds, HydrogenBondDonor, HydrogenBondAcceptors, SLogP, TPSA - and generate a
SamplePhysicochemicalProperties.csv file containing sequential compound IDs along with properties data, type:

% CalculatePhysicochemicalProperties.pl -o Sample.sdf

To calculate all available physicochemical properties and generate both SampleAllProperties.csv and
SampleAllProperties.sdf files containing sequential compound IDs in CSV file along with properties data, type:

% CalculatePhysicochemicalProperties.pl -m All --output both
-r SampleAllProperties -o Sample.sdf

To calculate RuleOf5 physicochemical properties and generate a SampleRuleOf5Properties.csv file containing
sequential compound IDs along with properties data, type:

% CalculatePhysicochemicalProperties.pl -m RuleOf5
-r SampleRuleOf5Properties -o Sample.sdf

To calculate RuleOf5 physicochemical properties along with counting RuleOf5 violations and generate a
SampleRuleOf5Properties.csv file containing sequential compound IDs along with properties data, type:
To calculate RuleOf3 physicochemical properties and generate a SampleRuleOf3Properties.csv file containing sequential compound IDs along with properties data, type:

```bash
% CalculatePhysicochemicalProperties.pl -m RuleOf3 --RuleOf3Violations Yes
    -r SampleRuleOf3Properties -o Sample.sdf
```

To calculate RuleOf3 physicochemical properties along with counting RuleOf3 violations and generate a SampleRuleOf3Properties.csv file containing sequential compound IDs along with properties data, type:

```bash
% CalculatePhysicochemicalProperties.pl -m RuleOf3 --RuleOf3Violations Yes
    -r SampleRuleOf3Properties -o Sample.sdf
```

To calculate a specific set of physicochemical properties and generate a SampleProperties.csv file containing sequential compound IDs along with properties data, type:

```bash
% CalculatePhysicochemicalProperties.pl -m "Rings,AromaticRings"
    -r SampleProperties -o Sample.sdf
```

To calculate HydrogenBondDonors and HydrogenBondAcceptors using HydrogenBondsType1 definition and generate a SampleProperties.csv file containing sequential compound IDs along with properties data, type:

```bash
% CalculatePhysicochemicalProperties.pl -m "HydrogenBondDonors,HydrogenBondAcceptors"
    --HydrogenBonds HBondsType1 -r SampleProperties -o Sample.sdf
```

To calculate TPSA using sulfur and phosphorus atoms along with nitrogen and oxygen atoms and generate a SampleProperties.csv file containing sequential compound IDs along with properties data, type:

```bash
% CalculatePhysicochemicalProperties.pl -m "TPSA" --TPSA "IgnorePhosphorus,No, IgnoreSulfur,No"
    -r SampleProperties -o Sample.sdf
```

To calculate MolecularComplexity using extendend connectivity fingerprints corresponding to atom neighborhood radius of 2 with atomic invariant atom types without any scaling and generate a SampleProperties.csv file containing sequential compound IDs along with properties data, type:

```bash
% CalculatePhysicochemicalProperties.pl -m MolecularComplexity --MolecularComplexity "MolecularComplexityType,ExtendedConnectivityFingerprints,NeighborhoodRadius,2,
    AtomIdentifierType,AtomicInvariantsAtomTypes, AtomicInvariantsToUse,AS X BO H FC MN,NormalizationMethodology,None"
    -r SampleProperties -o Sample.sdf
```

To calculate RuleOf5 physicochemical properties along with counting RuleOf5 violations and generate a SampleRuleOf5Properties.csv file containing compound IDs from molecule name line along with properties data, type:

```bash
% CalculatePhysicochemicalProperties.pl -m RuleOf5 --RuleOf5Violations Yes
    --DataFieldsMode CompoundID --CompoundIDMode MolName
    -r SampleRuleOf5Properties -o Sample.sdf
```

To calculate all available physicochemical properties and generate a SampleAllProperties.csv file containing compound ID using specified data field along with along with properties data, type:

```bash
% CalculatePhysicochemicalProperties.pl -m All
    --DataFieldsMode CompoundID --CompoundIDMode DataField --CompoundID Mol_ID
    -r SampleAllProperties -o Sample.sdf
```

To calculate all available physicochemical properties and generate a SampleAllProperties.csv file containing compound ID using combination of molecule name line and an explicit compound prefix along with properties data, type:

```bash
% CalculatePhysicochemicalProperties.pl -m All
    --DataFieldsMode CompoundID --CompoundIDMode Mol_ID
    -r SampleAllProperties -o Sample.sdf
```
To calculate all available physicochemical properties and generate a SampleAllProperties.csv file containing specific data fields columns along with with properties data, type:

% CalculatePhysicochemicalProperties.pl -m All
--DataFieldsMode CompoundID --CompoundIDMode MolnameOrLabelPrefix
--CompoundID Cmpd --CompoundIDLabel MolID -r SampleAllProperties
-o Sample.sdf

To calculate all available physicochemical properties and generate a SampleAllProperties.csv file containing common data fields columns along with with properties data, type:

% CalculatePhysicochemicalProperties.pl -m All
--DataFieldsMode Specify --DataFields Mol_ID -r SampleAllProperties
-o Sample.sdf

To calculate all available physicochemical properties and generate both SampleAllProperties.csv and CSV files containing all data fields columns in CSV files along with with properties data, type:

% CalculatePhysicochemicalProperties.pl -m All
--DataFieldsMode All --output both -r SampleAllProperties
-o Sample.sdf

AUTHOR

Manish Sud <msud@san.rr.com>

SEE ALSO

ExtractFromSDtFiles.pl, ExtractFromTextFiles.pl, InfoSDFiles.pl, InfoTextFiles.pl

COPYRIGHT

Copyright (C) 2019 Manish Sud. All rights reserved.

This file is part of MayaChemTools.

MayaChemTools is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version.